
 

 
Finding a Minimum Covering Circle Based on 

Infinity Norms 
 

by Andrew A. Thompson 
 
 

ARL-TR-4495 July 2008 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Approved for public release; distribution is unlimited.   



NOTICES 
 

Disclaimers 
 
The findings in this report are not to be construed as an official Department of the Army position unless 
so designated by other authorized documents. 
 
Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the 
use thereof. 
 
Destroy this report when it is no longer needed.  Do not return it to the originator. 



Army Research Laboratory 
Aberdeen Proving Ground, MD  21005-5066 
 

ARL-TR-4495 July 2008 
 
 
 
 

Finding a Minimum Covering Circle Based on 
Infinity Norms 

 
Andrew A. Thompson 

Weapons and Materials Research Directorate, ARL 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Approved for public release; distribution is unlimited.   



 ii

REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering 
and maintaining the data needed, and completing and reviewing the collection information.  Send comments regarding this burden estimate or any other aspect of this collection of information, 
including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson 
Davis Highway, Suite 1204, Arlington, VA 22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to 
comply with a collection of information if it does not display a currently valid OMB control number. 
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY) 

July 2008 
2. REPORT TYPE 

Final 
3. DATES COVERED (From - To) 

October 2007–February 2008 
5a. CONTRACT NUMBER 

 
5b. GRANT NUMBER 

4. TITLE AND SUBTITLE 

Finding a Minimum Covering Circle Based on Infinity Norms 

5c. PROGRAM ELEMENT NUMBER 

5d. PROJECT NUMBER 

AH80 
5e. TASK NUMBER 

 

6. AUTHOR(S) 

Andrew A. Thompson 

5f. WORK UNIT NUMBER 

 
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

U.S. Army Research Laboratory 
ATTN:  AMSRD-ARL-WM-BF 
Aberdeen Proving Ground, MD  21005-5066 

8. PERFORMING ORGANIZATION 
    REPORT NUMBER 

ARL-TR-4495 

10. SPONSOR/MONITOR’S ACRONYM(S) 
 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

 
11. SPONSOR/MONITOR'S REPORT 
      NUMBER(S) 

 
12. DISTRIBUTION/AVAILABILITY STATEMENT 

Approved for public release; distribution is unlimited. 

13. SUPPLEMENTARY NOTES 

 

14. ABSTRACT 

This report discusses the use of infinity norms to solve the problem of finding the minimum covering radius for a set of points.  
The minimum covering radius can be used as a measure of the accuracy of a collection of shots or a description of spall 
fragments.  The algorithm worked well for the data sets investigated, sometimes converging in three iterations; however, in 
some cases, there were hundreds of iterations.  For specific metrics, it would be possible to use directional derivatives to 
improve the convergence of the process.  The overall design is based on defining an improvement step to be repeated until the 
state of the process fulfills a specific criterion.  Infinity norms offer a theoretic framework for algorithm development. 

15. SUBJECT TERMS 

covering circle, infinity norm, algorithm 

16. SECURITY CLASSIFICATION OF:   
19a. NAME OF RESPONSIBLE PERSON 
Andrew A. Thompson 

a. REPORT 
UNCLASSIFIED 

b. ABSTRACT 
UNCLASSIFIED 

c. THIS PAGE 
UNCLASSIFIED 

17. LIMITATION 
OF ABSTRACT 

 
UL 

18. NUMBER 
OF PAGES 

 
20 

19b. TELEPHONE NUMBER (Include area code) 
410-278-6805 

 Standard Form 298 (Rev. 8/98) 
 Prescribed by ANSI Std. Z39.18 



 iii

Contents 

1. Introduction 1 

2. Method 1 

3. Implementation 3 

4. Conclusion 5 

Appendix.  MATLAB Program Listing 7 

Distribution List 13 
 



 iv

List of Figures 

Figure 1.  Graphics user interface for covering circle algorithm.....................................................3 
Figure 2.  Main function pseudo-code. ............................................................................................4 
Figure 3.  Function MoveCenter pseudo-code.................................................................................4 
Figure 4.  An inappropriate covering circle. ....................................................................................5 



 1

1. Introduction 

This report discusses the use of infinity norms to solve the problem of finding the minimum 
covering radius for a set of points.  The minimum covering radius can be used as a measure of 
the accuracy of a collection of shots or a description of spall fragments.  The infinity norm 
differs from the 1-norm and the 2-norm in that it is determined by a single element of a set.  The 
infinity norm is the largest deviation from a reference function or point, the 1-norm is the 
average deviation (always positive) from the reference function, and the 2-norm is the average of 
the square root of the square of the difference between the set of interest and a reference set.  The 
2-norm has been extensively used as it is commensurate with mathematical analysis.  The 
1-norm has become more popular as computing has made iterative methods more accessible.  

An appointment of infinity norms is that they allow nonprobabilistic statements to be made.  
These statements are typically related to a performance metric of some type and have the 
following style:  If the parameters are in this range, then the performance is better than this 
value.  Notice that this form of statement is typical of mathematics and is the type of statement 
required for many artificial intelligence database applications; that is, it fits the framework of a 
predicate calculus.  In this report, the infinity norm is used to make descriptive statements of the 
form:  All the data is within a circle of radius r, or equivalently, if the data is from set A, then it 
is all within a circle with a radius of r.  The method developed can be used for any n-dimensional 
space for any performance metric. 

2. Method 

A method to find the minimum covering radius for a set of points was developed within the 
framework of infinity norms.  In this case, the set of controllable parameters is the center of a 
circle.  The task is to adjust the center in a manner as to reduce the radius of the circle.  The 
infinity norm is the greatest distance between each point and the center.  A fine way to think of 
the algorithm is as an adjustable center removal process.  For an infinity norm, typically only one 
point in the data set is pertinent for a given set of conditions.  On a given iteration only the point 
associated with the infinity norm and the set of parameters are pertinent to reducing the 
magnitude of the norm.  The gradient of the distance function for a particular point is toward the 
given point.  For the minimum radius coverage problem, this amounts to moving the center 
towards the point associated with the infinity norm.  The question then is how to determine the 
magnitude of this displacement.  The problem is simple; it is not desirable to move so far that 
another point defines the infinity norm and has a larger magnitude.



 2

As a first case, consider two points and assume the center is collocated at one of the points.  
Assuming distance is being used as the metric; one point will have a norm equal to the distance 
between the two and the other will have a norm of zero.  If the magnitude of the difference in the 
norms is used as an adjustment for the center, the process will oscillate between the two points 
and never converge.  This oscillation occurs along the direction connecting the two points, and is 
eliminated by using 0.5 as a multiplier of the magnitude.  In this situation, when the midpoint 
between the two points is reached, there are two points with the same norm.  Any change to the 
circles center from the midpoint can be thought of as a component along the connecting segment 
and a component orthogonal to this segment.  Any change along the connecting segment will 
increase the infinity norm as one distance (metric) must increase.  Changes in the orthogonal 
component will cause both distances (metrics) to increase.  For distances, the Pythagorean 
Theorem guarantees this increase; for other metrics, the Cauchy Schwartz inequality can be 
invoked.  So a deviation from the midpoint along either component predicts an increase of the 
infinity norm.  This suggests an exit condition for an algorithm can be:  If the center point is at 
the midpoint of two points and the norms associated with all the other points are less than these 
two norms, then the search is done. 

Next, consider an exit condition for a set of three points, if the third point is within the circle 
defined by the two most distant points the situation reverts to the previous case; however, the 
third point can keep the center from reaching the midpoint of the two most distant points.  If the 
center is located so that all three points are on the circumference of the same circle then the 
algorithm should exit as there is no basis for improvement in reducing the infinity norm.  
Consider the situation where the algorithm has found two points that have the same infinity 
norm.  At this point for the distance metric, the center of the circle must be on the perpendicular 
bisector of the two points.  To decrease the norms associated with these two points, the center 
must move toward their midpoint; during this process, it is possible for a third point to prevent 
further decrease when it obtains the same value as the other two points.  In this situation, the 
center will be at the intersection of the perpendicular bisectors. 

Based on the former discussion, an algorithm to find the minimum covering radius was 
developed.  The basic step is to move towards the point with the largest distance from the center.  
This process is repeated until the difference between the two largest distances is within 
tolerances defined by the difference in the distances between the second and third largest 
distances.  If the criteria is met, the process moves toward the midpoint of the segment defined 
by the two points with the largest distances.  If the midpoint is reached, the algorithm terminates; 
if three points have equal distances (the same norm), then the process terminates.  The algorithm 
uses a sort routine to order the distance metric and then a routine to find the index of a point with 
a given value.  Both of these functions are available as MATLAB commands.



 3

3. Implementation 

The ideas were implemented through a graphical user interface (GUI) in MATLAB shown in 
figure 1.  There are three buttons on the GUI.  The first, called “Get Data,” queries the user for a 
data file.  The file is assumed to contain two rows of entries for the X and Y values of the data.  
If the data is stored from MATLAB, it must be in the first element using the save command.  For 
example, if the data is in a variable named dat, then the command, “save info dat,” will place the 
information in the variable dat into the file, “info.mat.”  After the file is opened, the GUI will 
display a graph of the data.  To continue, the user must specify the max number of replications to 
be made.  There is a slide bar to adjust this value; alternatively, the user can enter a number in 
the text box above the slide bar.  After the maximum number of replications is set, the user then 
clicks the “Adjust Center” button.  The ensuing graph shows the movement of the center.  The 
number of iterations to meet termination requirements is displayed in the replications text box.  
The user can click the “Final Graph” button to see the end product.  Displayed on the graph will 
be the data points in blue, the center of the circle as a red plus, and the circle in green.  On the 
GUI under the title “Center,” the center of the circle will be displayed; under the title “Radius,” 
will be the minimum covering radius.  Finally, if the user wants a figure for reports without the 
GUI interface, the menu item “AxestoFigure” can be clicked.  This will open a figure window 
with the final graph using the file name as the title and the center location and radius printed 
below the x-axis.  Properties can be adjusted using the figure menu item axes properties (under 
the edit menu).  After this, the figure can be copied and moved to any document.  The MATLAB 
program listing is included in the appendix. 

 
Figure 1.  Graphics user interface for 

covering circle algorithm.



 4

The starting point for the center was set to the mean of the locations.  This worked for all the 
data sets investigated.  The pseudo-code is contained in figures 2 and 3. 

 

Figure 2.  Main function pseudo-code. 

 

 

Figure 3.  Function MoveCenter pseudo-code. 

 
It is prudent to mention the following situation as an example of the algorithm converging to an 
improper solution.  Consider three points on a circle within a small arc.  If the algorithm selects 
the center of this circle on any iteration it will terminate.  This is an undesirable situation since 
the distance between the points will all be less than the radius of this circle; this is illustrated in 
figure 4.  Although this situation did not occur using the mean of the locations as the starting 
point for the center, it did occur in one testing situation.  Observation of the graph of the solution 
can be used to rule out this case.  To test a solution it would be possible to restart the algorithm at 
the average of the three points defining the final circle and then determine if the algorithm 
converges to the same solution.  

Main Function 
Data is an array of points 
Choose Center as Average of Data 
lastCenter=Center+2*tolerance 
For i=1 till # of iterations 
 If distance between consecutive centers < tolerance 
  Done 
 Else 
  Call MoveCenter 
 Endif 
Endfor 
Done 

Function MoveCenter 
//comment costfunction evaluates the data based on the metric 
//comment sort puts the data in descending order high to low  
Newdata=data-center 
D2=costfunction(Newdata) 
Ds=sort(D2) 
If Ds(1)=Ds(2)=Ds(3) 
 Done 
Endif 



 5

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

 

Figure 4.  An inappropriate covering circle. 

 

4. Conclusion 

It is certainly possible to develop a more complex algorithm utilizing more detailed information.  
For example, the distant matrix could be calculated for the set of n points; this will take 20.5n n−  
distance calculations.  The Elzinga-Hearn method1 is a geometric algorithm that solves this 
problem.  The method developed is conceptually straightforward as it is based on the definition of 
the infinity norm.  Unlike methods associated with linear programming, this method does not 
require linear metrics.  The algorithm worked well for the data sets investigated, sometimes 
converging in three iterations; however, in some cases, there were hundreds of iterations.  For 
specific metrics, it would be possible to use directional derivatives to improve the convergence 
of the process.  The overall design is based on defining an improvement step to be repeated until 
the state of the process fulfills a specific criterion. Infinity norms offer a theoretic framework for 
algorithm development.  

                                                 
1Elzinga, D. J.; Hearn, D. W.  Geometrical Solutions for Some Minimax Location Problems.  Transportation Science 1972, 6, 

379–394. 



 6

INTENTIONALLY LEFT BLANK. 



 7

 

 

 

 

 

 

 

 

 

 

 

 

Appendix.  MATLAB Program Listing  

 

                                                 
 This appendix appears in its original form, without editorial change. 



 8

 
 
function varargout = ccgui(varargin) 
% CCGUI M-file for ccgui.fig 
%      CCGUI, by itself, creates a new CCGUI or raises the existing 
%      singleton*. 
% 
%      H = CCGUI returns the handle to a new CCGUI or the handle to 
%      the existing singleton*. 
% 
%      This function finds the radius of a the covering circle of a set 
%      of points (x,y) 
%      The button get data is used to open a file containing the data 
%      The button adjust data is used in conjunction with the number of 
%      iterations to cycle in an attempt to find the center of the circle 
%      with the smallest covering radius 
% 
% 
%      CCGUI('CALLBACK',hObject,eventData,handles,...) calls the local 
%      function named CALLBACK in CCGUI.M with the given input arguments. 
% 
%      CCGUI('Property','Value',...) creates a new CCGUI or raises the 
%      existing singleton*.  Starting from the left, property value pairs are 
%      applied to the GUI before ccgui_OpeningFcn gets called.  An 
%      unrecognized property name or invalid value makes property application 
%      stop.  All inputs are passed to ccgui_OpeningFcn via varargin. 
% 
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one 
%      instance to run (singleton)". 
% 
% See also: GUIDE, GUIDATA, GUIHANDLES 
 
% Edit the above text to modify the response to help ccgui 
 
% Last Modified by GUIDE v2.5 04-Feb-2008 11:32:02 
%Andrew Thompson 
%2008 USARL 
% Begin initialization code - DO NOT EDIT 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @ccgui_OpeningFcn, ... 
                   'gui_OutputFcn',  @ccgui_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 
 
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code - DO NOT EDIT 
 
 
% --- Executes just before ccgui is made visible. 
function ccgui_OpeningFcn(hObject, eventdata, handles, varargin) 
% This function has no output args, see OutputFcn. 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% varargin   command line arguments to ccgui (see VARARGIN) 
 
% Choose default command line output for ccgui 
handles.output = hObject; 
 
% Update handles structure 
guidata(hObject, handles); 
 
% UIWAIT makes ccgui wait for user response (see UIRESUME) 
% uiwait(handles.figure1); 
 
 
% --- Outputs from this function are returned to the command line. 
function varargout = ccgui_OutputFcn(hObject, eventdata, handles) 
% varargout  cell array for returning output args (see VARARGOUT); 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 



 9

 
% Get default command line output from handles structure 
varargout{1} = handles.output; 
 
 
% --- Executes on button press in pushfile. 
function pushfile_Callback(hObject, eventdata, handles) 
% hObject    handle to pushfile (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
[filename,path]=uigetfile('*.*'); 
if isequal(filename,0) 
    disp('no change') 
else 
    set(handles.textpath,'string',path); 
    set(handles.textfile,'string',filename); 
    dat=load(fullfile(path,filename)); 
    if isstruct(dat)   %if saved as a *mat it is loaded as a structure take the first 
field as data 
       fnames=fieldnames(dat); 
        dat=dat.(fnames{1}); 
    end 
    [m,n]=size(dat); 
    if n==2 
        dat=dat'; 
    end 
    axes(handles.axes1); 
    hold off 
    plot(dat(1,:),dat(2,:),'b*') 
    set(handles.pushfile,'UserData',dat); 
    %set(handles.textCenter,'string',' '); 
    %set(handles.textRadius,'string',' '); 
end 
 
 
 
function edit2_Callback(hObject, eventdata, handles) 
% hObject    handle to edit2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of edit2 as text 
%        str2double(get(hObject,'String')) returns contents of edit2 as a double 
 
 
% --- Executes during object creation, after setting all properties. 
function edit2_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
 
 
% --- Executes on slider movement. 
function slider2_Callback(hObject, eventdata, handles) 
% hObject    handle to slider2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'Value') returns position of slider 
%        get(hObject,'Min') and get(hObject,'Max') to determine range of slider 
set(handles.edit2,'string',num2str(floor(get(handles.slider2,'Value')))); 
 
% --- Executes during object creation, after setting all properties. 
function slider2_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to slider2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: slider controls usually have a light gray background. 
if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor',[.9 .9 .9]); 
end 
 
 



 10

% --- Executes on button press in pbAdjustCircle. 
function pbAdjustCircle_Callback(hObject, eventdata, handles) 
% hObject    handle to pbAdjustCircle (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
dat=get(handles.pushfile,'UserData'); 
n=str2num(get(handles.edit2,'string')); 
c=[mean(dat(1,:));mean(dat(2,:))]; 
clist=c; 
for i=1:n 
    clast=c; 
    [c,r]=moveCenter(dat,c); 
    cdif=c-clast; 
    ncdif=norm(cdif); 
    if ncdif<.00000001 
        break; 
    end 
    clist=[clist, c]; 
end 
set(handles.edit2,'string',num2str(i)); 
axes(handles.axes1); 
plot(clist(1,:),clist(2,:),'b-',clist(1,:),clist(2,:),'r.',c(1),c(2),'r+') 
set(handles.textCenter,'string',[num2str(c(1),4),', ',num2str(c(2),4)]); 
set(handles.textRadius,'string',num2str(r,5)); 
cr=[c;r]; 
set(handles.pbAdjustCircle,'UserData',cr); 
 
 
 
% --- Executes on button press in pushbutton3. 
function pushbutton3_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton3 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
dat=get(handles.pushfile,'UserData'); 
cr=get(handles.pbAdjustCircle,'UserData'); 
theta=0:.01:2*pi+.01; 
axes(handles.axes1); 
plot(cr(3)*cos(theta)+cr(1),cr(3)*sin(theta)+cr(2),'g') 
hold on 
plot(dat(1,:),dat(2,:),'b*') 
plot(cr(1),cr(2),'r+') 
 
 
% -------------------------------------------------------------------- 
function Untitled_1_Callback(hObject, eventdata, handles) 
% hObject    handle to Untitled_1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
 
% -------------------------------------------------------------------- 
function Untitled_3_Callback(hObject, eventdata, handles) 
% hObject    handle to Untitled_3 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
 
% -------------------------------------------------------------------- 
function Untitled_4_Callback(hObject, eventdata, handles) 
% hObject    handle to Untitled_4 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
 
% -------------------------------------------------------------------- 
function Untitled_5_Callback(hObject, eventdata, handles) 
% hObject    handle to Untitled_5 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
 
% -------------------------------------------------------------------- 
function Untitled_2_Callback(hObject, eventdata, handles) 
% hObject    handle to Untitled_2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
 
% -------------------------------------------------------------------- 
function uitoggletool3_ClickedCallback(hObject, eventdata, handles) 



 11

% hObject    handle to uitoggletool3 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
 
% -------------------------------------------------------------------- 
function File_menu_Callback(hObject, eventdata, handles) 
% hObject    handle to File_menu (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
newfigurehandle = figure 
copyobj(handles.axes1,newfigurehandle) 
t=get(handles.textfile,'string'); 
t=['File: ',t]; 
c=get(handles.textCenter,'string'); 
xa=[' Center: (',c, ' )']; 
r=get(handles.textRadius,'string'); 
xa=[xa, '    Radius: ',r]; 
title(t) 
xlabel(xa) 
print(newfigurehandle,'-dmeta') 
%delete(newfigurehandle) 

 
 

function [center,r]=moveCenter(dat,center) 
%dat is a 2 dimensional set of data 
%c is the assumed center 
% 
%the algorithm works by moving the center toward the 
%data point with the greatest distance it is done when 
%two or three points are all at the same approximate distance 
%from the center 
%this code is just one step so it needs to be called by a routine that 
%decides when to stop adjusting 
 
%Andrew Thompson 
%basically an infinity norm minimization routine 
 
 
[r,c]=size(dat); 
if c==2 
    dat=dat'; 
    n=r; 
else 
    n=c; 
end 
 
[r,c]=size(center); 
if c==2 
    center=center'; 
end 
 
z=repmat(center,1,n); 
newdat=dat-z; 
ndat2=newdat.^2; 
d2=sum(ndat2); 
d2=sqrt(d2); 
ds=sort(d2,2,'descend'); 
delta=.5*(ds(1)-ds(2));   %.5 minimizes the convergence oscillation 
i=find(d2==max(d2)); 
%more than two points on circumpherence so done 
if length(i)>2 
    r=ds(1); 
    return 
end 
%if length(i)==2 
if ((ds(1)-ds(2)) < .2*(ds(2)-ds(3)) ) 
    if length(i) < 2 
        i=[i find(d2==ds(2))]; 
    end 
    mid=(dat(:,i(1))+dat(:,i(2)))/2; 
    if center==mid 
        %out='centered' 
        r=ds(1); 
        return; 
    end 
    dc1=mid-center; 
    %dc=dc1/norm(dc1); 
    delta=ds(1)-ds(3); 



 12

    if delta>norm(dc1) 
        delta=1; 
    end 
    center=center+delta*dc1; 
else 
    dc=dat(:,i)-center; 
    dc=dc/norm(dc); 
    center=center+delta*dc; 
end 
z=repmat(center,1,n); 
newdat=dat-z; 
ndat2=newdat.^2; 
d2=sum(ndat2); 
d2=sqrt(d2); 
ds=sort(d2,2,'descend'); 
r=ds(1); 

 
 
 
 



 
 
NO. OF  
COPIES ORGANIZATION  
 

 13

 1 DEFENSE TECHNICAL 
 (PDF INFORMATION CTR 
 ONLY) DTIC OCA 
  8725 JOHN J KINGMAN RD 
  STE 0944 
  FORT BELVOIR VA 22060-6218 
 
 1 US ARMY RSRCH DEV & 
  ENGRG CMD 
  SYSTEMS OF SYSTEMS 
  INTEGRATION 
  AMSRD SS T 
  6000 6TH ST STE 100 
  FORT BELVOIR VA  22060-5608 
 
 1 DIRECTOR 
  US ARMY RESEARCH LAB 
  IMNE ALC IMS 
  2800 POWDER MILL RD 
  ADELPHI MD 20783-1197 
 
 1 DIRECTOR 
  US ARMY RESEARCH LAB 
  AMSRD ARL CI OK TL 
  2800 POWDER MILL RD 
  ADELPHI MD 20783-1197 
 
 1 DIRECTOR 
  US ARMY RESEARCH LAB 
  AMSRD ARL CI OK T 
  2800 POWDER MILL RD 
  ADELPHI MD 20783-1197 
 
 

ABERDEEN PROVING GROUND 
 
 1 DIR USARL 
  AMSRD ARL CI OK TP (BLDG 4600) 
 
 



 
 
NO. OF NO. OF 
COPIES ORGANIZATION COPIES ORGANIZATION 
 

 14

 1 DREXEL UNIV 
  DEPT OF MECHL ENGRG 
  B CHANG 
  3141 CHESTNUT ST 
  PHILADELPHIA PA 19104 
 
 1 DIRECTOR 
  US ARMY RSRCH LAB 
  AMSRD ARL CI NT 
  R PRESSLEY 
  2800 POWDER MILL RD 
  ADELPHI MD 20783-1197 
 
 

ABERDEEN PROVING GROUND 
 
 2 COMMANDER 
  USAATC 
  TEDT AT ADR 
  B GILLICH 
  S CLARK 
  400 COLLERAN RD 
  TRAILER T1 
  APG MD 21005-5059 
 
 1 COMMANDER 
  USAATC 
  TEDT AT ADF 
  S NOVAK 
  400 COLLERAN RD 
  APG MD 21005-5059 
 
 21 DIR USARL 
  AMSRD AAR AEF T 
   M ANDRIOLO 
  AMSRD ARL CI CT 
   B BODT 
   R KASTE 
  AMSRD ARL SL BD 
   J COLLINS 
   L MOSS 
  AMSRD ARL SL BW 
   P GILLICH 
  AMSRD ARL WM BA 
   R MCGEE 
   T BROWN 
   T HARKINS 
   M ILG 
  AMSRD ARL WM BF 
   J WALD 
   J WALL 
   D WEBB 

   M ARTHUR 
   A THOMPSON (4 CPS) 
   B FLANDERS 
   R PEARSON 
   B OBERLE 
 
 
 


